

Functional unit

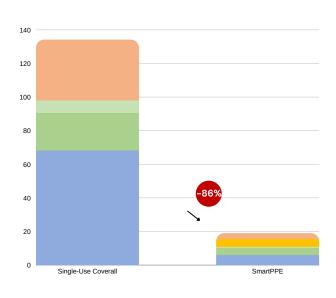
Description of Items

Single-use Coverall

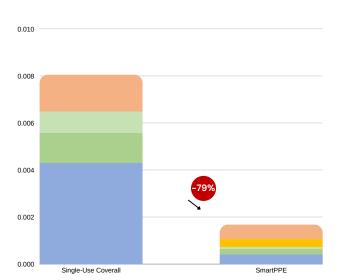
Lifespan: 1 use Materials: Virgin Polyester, Polypropylene, Rubber,

SmartPPE

- Lifespan: 100 uses
- Materials: Virgin Polyester, Polypropylene, Rubber,


Reference Single-Use 100 SmartPPE 100

100 uses of a coverall (EBOLA)


Assumptions

Both products are manufactured from locally sourced materials in China and transported to the field by ship. SmartPPE is assumed to be washed after every use with tap water, chlorine and soap. Open burning in considered as end of life.

Results of the computation

Stage	kgCO₂e	
Stage	Single Use	SmartPPE
Raw Material	68.28	6.10
Production	22.44	4.08
Transportation	7.33	0.74
Use	0.00	4.61
End-of-Life	36.15	3.47

Stage		Human Health	
Stage		Single Use	SmartPPE
Raw Material		4.30E-03	4.09E-04
Production		1.29E-03	2.34E-04
Transportation		9.01E-04	9.08E-05
Use		0.00E+00	3.52E-04
End-of-Life		1.56E-03	5.92E-04

Variations (% from baseline figures presented above)

To use recycled materials

Computation made by considering 100% recycled raw materials for products

kgCO2e		
Single-Use	SmartPPE	
-25%	-87%	
Human Single-Use	Health SmartPPE	

To use renewable energy for production

Computation made by considering 100% of renewable energy in factory mix

kgCO2e		
Single-Use	SmartPPE	
-14%	-88%	
Single-Use	SmartPPE	
-11%	-81%	

To ship via air freight

Computation made by considering overseas shipping by air

kgCO2e		
Single-Use	SmartPPE	
+37%	-82%	
Single-Use	SmartPPE	
+23%	-76%	

To dispose via recycling

Computation made by considering waste sent to recycling facilities

kgCO2e		
Single-Use	SmartPPE	
-15%	-86%	
Single-Use	SmartPPE	
-11%	-86%	

Best Possible Scenario Recycled + Renewable + Collected for Recycling SmartPPE Single-Use -39% -90% Single-Use **SmartPPE** -37% -89%

Analyses

To reduce the environmental impact of single-use coveralls, significant improvements can be made by focusing on raw materials and the energy used during manufacturing. However, the greatest reductions are possible by switching from singleuse to reusable coveralls.

TIt is important to highlight that this study focuses on two main indicators: climate change and human health. Other impact categories, such as ecosystem quality and water usage, are not covered. For example, the reusable coverall requires approximately 1,000 litres of water for cleaning over its lifespan.

Emission factors

The values displayed here are not per functional unit but per item. These values can be used to compute a carbon footprint of an organisation and can be adapted to a specific case using the tool

Name GHC	CUC Protocol Cotocorios	kgCO	kgCO2e/unit	
	GHG Protocol Categories	Single-Use	SmartPPE	
Cradle-to-grave	N/A	1.34	19.0	
Cradle-to-gate	3.1 Purchased Goods	0.92	10.3	

References

<u>lifecycle-assessments/</u>.

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. 'The ecoinvent database version 3 (part I): overview and methodology'. The International Journal of Life Cycle Assessment, [online]

21(9), pp.1218-1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8.

Rajput, A., Tobin Greene, C. and Schmid, S. (no date) 'Life Cycle Assessment (LCA) Methodology'. Available at: https://climateactionaccelerator.org/wpcontent/uploads/2025/06/EPFL LCA methodology v1.0. pdf.

Repository of life cycle assessments - Climate Action

Accelerator (2025). Available at: https://climateactionaccelerator.org/repository-of-

About this project

Designing methodologies and performing life cycle analyses of high-impact items to build a GHG emission factor and environmental impact database adapted to the humanitarian sector with the goal of identifying key strategies to reduce environmental impacts.

EPFL EssentialTech Center:

Dr. Grégoire Castella, Dr. Cara Tobin, Emeline Darçot

EPFL LEURE:

Dr. Sascha Nick, Ashima Rajput

International Committee of the Red Cross (ICRC): Anna Maria Liwak, Carmen Garcia Duro

Climate Action Accelerator:

Bruno Jochum, Sonja Schmid, Paolo Sévègnes

Associated expert:

Dr. Damien Friot